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Overview

• Ground  and Space Fundamentals
– Atmosphere

– Coherence Time

– Sensitivity

• Astrometry: phase measurement
– Wide Angle

– Narrow Angle

• Imaging: visibility and phase measurement

• Planet Detection: visibility and phase control
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Space Advantages
• Atmospheric transmission:

– X-ray

– UV

– NIR bands between 1-10 microns

– Sub-millimeter

• Lack of Turbulence

• Easily reconfigurable u-v
coverage (spinning the
spacecraft)

• Easy to cool optics
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Ground Advantages
• Longer baselines (up to a point)

• Larger apertures

• Upgrades, lifetime

• Cost
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Atmospheric Transmission at MKO 0.9 - 6 microns
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These data, produced using the program IRTRANS4, were obtained from the UKIRT worldwide web pages. 

Atmospheric Transmission at MKO 0.9 - 30 microns
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Dispersion
• “Wedges” in atmosphere lead to ~ 20

micron delays in Mark III
measurement.

• Measured phase is different in red and
blue light by ~ 250 nm over visible
spectrum at tan(z)=1.

– Equivalent to 5 milli-arcsec

• Colavita 2-color technique: remove the
atmospheric wedge contribution based
on the difference in red and blue
phases.

• Improvement of ~ 5 compared to
single-color results.

• Limited by water-vapor turbulence
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Turbulence

• Wavefronts blow across the instrument
– Apertures: this is pretty fast, t0 = 10-20 ms for a 10 cm aperture.

Averages as t0
-1/2

– Baseline: large-scale wedges may be huge.  The spectrum is not
white. Averages as t-1/6  (This is a big problem for astrometry.)

• Coherence scale
– 1 arcsecond seeing, r0 = 10 cm in the visible

– scales as lambda6/5 (as does t0)

– “outer scale” may be hundreds of m

– Isoplanaticity: region around the target where wavefront r.m.s.
difference is < 1 radian

• This region is a few arcseconds across

• It limits the useful field for an adaptive optics system.
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Above the Atmosphere

• When is one above the atmosphere?
– Ftaclas et al studied scintillation measurements made from the Mir

space station

– Determined that at 30 km the Fried parameter is 164 m

• A long-baseline interferometer or large telescope  will be
optics limited at this altitude.

• They show that a Jovian planet could be detected around a
nearby star using a moderate telescope on a balloon flight.

• Serviceable instrument, 100 day missions, but as they point
out “It’s a long way down!”
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Isokinetic Angle
Star 1 Star 2

D or B

h θ

h = mean atmospheric height

D  = telescope diameter
B  = interferometer baseline

θ = 
h

BThe isokinetic angle defines the average height where the
beams from two different stars no longer overlap.
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Narrow Angle (Differential) Astrometry

• Very narrow angle
– Stars separation << isokinetic angle

– accuracy proportional to star separation and B^(-2/3)

• Not-so-narrow
– Stars separated by >> isokinetic angle

– accuracy independent of baseline, proportional to star separation ^ 1/3

Picture downloaded
from JPL PTI website
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Narrow Angle Astrometric Precision

STEPS Observation at Keck II

STEPS Observation at Palomar 5m

Shao and Colavita, 1992 A&A 262, 353

For a 1-hr long observation in  0.5 arcsec seeing

Colavita, (1994), 12 m baseline
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Ultimate Narrow Angle Limit on the Ground

• The Keck interferometer may be able to achieve 10 micro-
arcsecond relative accuracy between stars.
– Fractional sky coverage is small, few percent due to sparsity of

bright nearby stars

– This requires 5 nm metrology over 100 m baseline, relative to
starlight path.

• The Palomar Testbed Interferometer achieves 10s of
microarcseconds to K=13 (assumes bright reference star).

• The best single-aperture astrometry is ~ 200 micro-
arcseconds for sources separated by > few arcsec.
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Wide Angle Astrometry

• Ground based: limited by slow drifts in the non-white
atmosphere
– averages as t^-1/6

– The Mark III did ~ 5 milli-arcsec on stars with V<7

– NPOI will go fainter but will have similar

• Baseline is stable: few microns/night at the Mark III.
– Baseline solution is determined by fitting curves to stars using a

priori positions.

• In space, the baseline moves
– “Guide” interferometers are used to measure baseline motion

– Various schemes link together patches or rings on the sky.
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The Interferometer Baseline in Space

• Spacecraft drift because they can
– Solar pressure, magnetic fields, gravity gradients

• Star trackers measure the angular drift
– Typically good to better than 1 arcsec

– Control is typically +/- 1 arcsec

• Hard to do better than this on an interferometer
– Long thin structures are floppy

– The end-points thermally deflect by micro-radians with
respect to the star-tracker position

– Joints in deployed structures are weak points.
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Baseline phase referencing
• Inertial motion of baseline must

be controlled or known to
0.1*lambd/B radians
– 1 mas for a 10 m baseline in

the visible

• That’s 10x better than HST

• Requires the development of
dedicated star trackers, or

• On-board phase-referencing
interferometers
– Separate (see picture)

– Internal, a la PTI dual-star
feed.
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So what if the Baseline drifts?
• Resolution is lambda/B = 0.01 arcsec for a 10 m baseline

at 0.5 microns.
– Drift of 1 arcsec smears 100 fringes!
– This is comparable to the atmosphere

• But it’s measurable and somewhat predictable
• Delay lines can be moved to compensate the motion

– This is a new can of worms: dynamical changes in the S/C

• To the extent that the drift is not predictable (say 1% of
100 fringe motion), the spacecraft case is similar to
ground-based
– t0 = 0.1 sec
– r0 is large, similar to adaptive optics case

• Thus to have an advantage over the ground, a space
interferometer MUST have a phase reference.
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Maximum Baseline Length

• NASA is deploying a 60 m boom with an 800 lb mass.
(SRTM 3-D Synthetic Aperture Radar)
– 0.1 Hz boom

– 100 m is probably the maximum extension of this technology for
interferometry

• Separated spacecraft are required for longer baselines

Picture downloaded
from JPL SRTM web
site.
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SNR per frame in a ground-based
interferometer

Visibility SNR per frame
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Assumptions:
seeing = 1 arcsec (r0 = 10 cm)
Aperture size = 10 cm (0.7 um)
                          40 cm (2.4 um)
Throughput = 0.1
Bandwidth = 10%
Visibility = 1.0
Integration time = 10 ms (0.7 um)
                              40 ms (2.2 um)
0.7 microns: 3 e- read noise/frame
2.2 microns: 25 e- read noise/frame

0.7 um

Shot noise limited

Background noise limited
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How does going to space help?

Visibility SNR per frame
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New Curve Assumptions:
seeing = perfect
Aperture size = 10 cm (0.7 um)
                          40 cm (2.4 um)
Throughput = 0.1
Bandwidth = 10%
Visibility = 1.0
Integration time = 10 s (0.7 um)
                              40 s (2.2 um)
0.7 microns: 3 e- read noise/frame
2.2 microns: 25 e- read noise/frame

Take previous chart, integrate
    1000 frames (0.01 ms for 10 s)

A single 10 s integration
     in space

Going to space improves the
low SNR region by allowing
coherent integration. It does not
improve the high SNR region 
unless aperture size is increased.
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Improving the Odds
• r0 and t0 scale as λ6/5

• Photons/coherence volume goes as r0
2t0

• Photon limited, SNR scales as sqrt(n)
– Thus, SNR scales as sqrt(r0

2t0) = λ9/5

• When background noise limited, the SNR increases as λ18/5

• 2.4 vs 0.6 microns, shot limited, increases SNR by 12, greatly increasing
number of targets.

• Adaptive Optics can increase the effective r0

Downloaded from CFHT website

Picture downloaded from
AO Group, Blackett Laboratory,
Imperial College, London
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Adaptive Optics and SM Fiber Optics

tip-tilt
focus, astig

coma

- - - AO
       AO + SM

This plot shows the low-light SNR of V2 compared to an ideal interferometer 
having apertures of r0. The curves show what happens when the first 2, 5, 
and 9 non-piston Zernike terms are removed.  The fiber improves SNR by 
decreasing sensitivity to  visibility fluctuations and filtering out non-coherent 
light (Buscher and Shaklan, SPIE Kona, 1994).
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Adaptive Optics and SM Fiber Optics

- - - AO
       AO + SM

The plot is now annotated to show the efficiency compared to a space-borne 
interferometer that does not suffer from loss of  visibility. At d/r0 = 8, the 
efficiency of the ground based interferometer is ~ 0.2 in the estimate of V^2.

Low light level
SNR(V2) = N<|V|2>

Space SNR <|V|2> = 0
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Ground (+AO + Fiber) vs. Space Efficiency

• At d/r0 = 8, space is 5x more efficient for a short exposure.

• At d/r0 = 3, space is < 2x more efficient.

• This technique can push the fringe-tracking limit back by ~
3 magnitudes.  It significantly improves sky coverage and
utility of long-baseline arrays on the ground.

• But it does not compete with space for very-low SNR
objects. Long coherent integration times are required.
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Visibility calibration with Single-Mode Fiber Optics

• Single-mode fibers are spatial filters that remove the incoherent flux
and desensitize the interferometer to seeing fluctuations

• Coude du Foresto et al have demonstrated 1% calibration accuracy.

• SM fibers are used at IOTA, PTI, and are planned at CHARA

This picture downloaded
from the FLUOR website
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When fringe tracking is possible from
the ground …

• Going to longer integration times (i.e. one long integration vs.
averaging of many short frames) does not help.

• But one can improve in space by building a larger aperture.

• Then the SNR will improve linearly with the aperture diameter.

• Efficient apertures on the ground can be 1 m in diameter (0.7 microns)
using moderate adaptive optics.

• Apertures in space should be larger than 1 m to have a significant
advantage over ground-based interferometers.

… Space wins only if the aperture diameter
  is larger than is possible from the ground.
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SNR for a complex object
Shot-noise limit

Object complexity = C = number of resolved cells
Surface brightness = N = photons/cell/sec
Collecting area      = A  = effective area/u-v point
Integration time     = T
Signal from object = S = C*N*A*T

Fringe visibility     = V ~ 1/sqrt(C)
This can be thought of in terms of C
vectors having random phases adding 
together in the focal plane.

Signal to Noise ratio per UV point is
                                  
                     SNR = ------------  = V*sqrt(S) = sqrt(NAT)

V*S

sqrt(S)

INTEGRATION TIME
IS INDEPENDENT OF 
OBJECT COMPLEXITY!

Example:   Object 16 mag/arcsec^2
                  0.01 x 0.01 arcsec (one resolution element)

    SNR = 10 per u-v point requires 8000 s per u-v point
              (assumes nominal throughput of 29%, static V = 0.6, bandwidth = 500 A,
               central wavelength = 550 nm, and two 1 m apertures.)      

V*C*N*A*T

C*N*A*T
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Increasing Object Size and Number of Baselines
• More baselines increases collecting area

– M apertures provides M times more light

– 0.5*M^2 more baselines

• The light available (A) per baseline goes down as 1/M

• The integration time per u-v point increases as M compared to the single-
baseline case.

• Example 1:
– 16 mag/arcsec^2, 100 resolved points over 0.1 x 0.1 arcsec
– Integrated flux is V=21
– 15 apertures (107 baselines), each 1 m in diameter
– Integration time is 8000 * 15 =  120000 s (33 hrs) 10 x 10 map

• Example 2:
– 16 mag/arcsec^2, 400 resolved points over 0.2 x 0.2 arcsec
– Integrated flux is V=19.5
– 30 apertures (435 baselines), each 1 m in diameter
– Integration time is 8000 * 30 = 240000 s (67 hrs)  20 x 20 map

• Example 3:
– same source as ex. 2, but two apertures move to 400 positions
– Integration time is 8000 * 400 sec = a really really long time
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Planet Detection by Nulling Interferometry

• The sky background is magnitude -2.1 arcsec-2 in the N
band (10 microns)
– This really doesn’t limit things unless the optics train is cooled.

Let’s assume it’s cooled.

• At 10 microns, the diffraction limit of the Keck aperture is
0.2 arcsec.
– It thus sees the sky as a background of magnitude 1.4.

• An earth-like planet is ~ 15 magnitudes fainter than it’s
star at lambda=10 um.

• It will thus be ~ 15 stellar magnitudes below the thermal
flux of the sky.
– The problem is that the flux is “everywhere.”
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Planet detection in space

• In space, the prospect of seeing an earth-like planet is very
challenging, to say the least.

• But a nulling interferometer can effectively suppress the
central star light because that light is localized.

• It does not suppress the zodiacal light
– But the problem is many orders of magnitude easier than from the

ground.

• Ref: Gene Serabyn and C. Beichman’s presentations at the
summer school.
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DLI: a lens-like configuration
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MUSIC: 
Multiple Space-craft Interferometer Constellation
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SONATA
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OVLA
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Clementine II Interferometer
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Conclusions
• A space-borne interferometer need a phase-reference to monitor baseline

motion
– Without it, integration times will be short, and high spectral resolution will be

required

• Wide angle astrometry: space is required to improve on Hipparcos. A few-
micro-arcseconds may be achievable.

• Narrow angle astrometry
– Potential on the ground to see large terrestrials.

– No chance to detect Earths using interferometric techniques

• Imaging
– No clear winner except for inaccessible wavelength bands

– Large collecting apertures are required to image low-brightness complex objects.

• Nulling
– Atmosphere severely limits effectiveness of nulling

– Need to be above the atmosphere for planet detection

• Let’s do both!!


